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Abstract
We reconsider the long-standing problem of the effect of spin fluctuations on the critical
temperature and the isotope effect in a phonon-mediated superconductor. We discuss the general
physics of the interplay between phonons and paramagnons, and show that the previously used
approximate formulas fail to describe the correct behavior of Tc for general phonon and
paramagnon spectra. Using a controllable approximation, we derive an analytical formula for Tc

which agrees well with exact numerical solutions of the Eliashberg equations for a broad range
of parameters. On the basis of both numerical and analytical results, we predict a strong
enhancement of the isotope effect when the frequencies of spin fluctuation and phonons are of
the same order. We discuss application to near-magnetic superconductors such as MgCNi3.

(Some figures in this article are in colour only in the electronic version)

In the last decade a large number of superconductors have been
discovered in which enhanced spin fluctuations (SF) play a
role in the superconductivity, e.g., Sr2RuO4, MgCNi3, ε-Fe,
ZrZn2, and others, introducing new and interesting physics.
However, understanding such materials, even at an intuitive
level, has been hindered by the lack of a simple formula that
would approximate the full Eliashberg theory in a compact
analytical form, as the conventional McMillan formula (MMF)
does. As a result, uncritical generalizations of the latter have
been used as a substitute, despite the fact that, as we will show
below, some of them are too approximate or actually outright
incorrect. In this paper we present an analogue of the MMF,
derived in a controllable way and tested against numerical
solutions of full Eliashberg equations, including interaction
with SF (paramagnons). We point out the possibility of
a giant phonon isotope effect induced by SF. We will also
apply this theory, as an example, to a nearly ferromagnetic
superconductor, MgCNi3.

The understanding that SF are pair breakers in conven-
tional superconductors is nearly as old as the BCS theory it-
self [1]. Moreover, it was soon realized that strong coupling
manifests itself in a nontrivial way in the presence of SF [2, 3].
In a number of papers, numerical solutions of the Eliashberg
equations were presented, incorporating phonon (α2 Fp(ω)) as

well as SF (α2 Fs(ω)) spectral functions (see, e.g., [4]). How-
ever, solving the full Eliashberg equation is not always an op-
tion, and does not provide as much physical insight as ana-
lytical treatment. An analytical tool comparable to the famed
MMF is needed.

Retrospectively, one can realize that the overwhelming
success of the MMF is due to three factors: (a) it can
be derived analytically using simple approximations, (b) it
includes Coulomb repulsion effects, (c) it has three universal
adjustable parameters, which, after little tuning, produce an
expression which is surprisingly accurate for a large range
of phonon frequencies and coupling strengths. Compared to
the BCS equation, the MMF includes three essential pieces of
additional physics: effective mass renormalization, logarithmic
reduction of the Coulomb repulsion, and proper (logarithmic)
averaging of the phonon frequency. All three effects can be
derived analytically in some approximations. In fact, it is
known that the functional form of the MMF can be derived in
two different ways. One, known as the square-well model [5],
uses the Matsubara representation, where the coupling with
the phonons is parameterized in terms of the matrix λ(n, n′).
The model assumes two different approximations for the same
function λ(n, n′), depending on whether it is used in the
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equation for the mass renormalization Z or in the one for the
gap function φ:

λZ (n, n′) = λp�(ωp − |ωn−n′ |)
λφ(n, n′) = λp�(ωp − |ωn |)�(ωp − |ωn′ |). (1)

This models leads to an equation for the critical temperature,
Tc,

Tc = aωlog exp{−b(1 + λZ )/[λφ − μ∗(1 + cλZ )], (2)

where the theoretical parameters are a = 1.14, b =
c = 1, λZ = λφ = λp = 2

∫∞
0 ω−1α2 Fp(ω) dω and

λp lnωlog = 2
∫∞

0 ω−1 lnωα2 Fp(ω) dω. The renormalized
Coulomb potential is reduced from its bare value μ as μ∗ =
μ/(1 + μ ln ωC

ωlog
), where ωC characterizes the frequency cutoff

of the Coulomb interaction. The MMF formula is given by
equation (2) with optimized parameters a = 1/1.2, b = 1.04,
and c = 0.62.

SF, as opposed to phonons, induce repulsion for singlet
pairs. However, they contribute to the mass renormalization
just the same. Therefore the first instinctive notion is to let
λZ = λp + λs, where λs describes the SF, and λφ = λp − λs.
Equation (2) with this modification and standard a, b and c is
the one routinely used in the literature for materials with SF
(e.g., [6–8]).

Obviously, using two different approximations for the
same physical function λ(n, n′) depending on whether it
appears in the first or second Eliashberg equation cannot be
justified by any logic. It appears that the MMF formula can be
fortuitously derived in this way, but, as we will see below, this
approach fails when SF are included. An alternative derivation
of the MMF utilizes the real frequency axis formalism [9]. The
one-mode approximation is used, which assumes an Einstein
phonon at a frequency ωp, i.e., α2 F(ω) = λpωpδ(ω − ωp)/2.
The Eliashberg equations are then solved iteratively. After the
first iteration one obtains [9]

Tc = 1.14ωp exp

⎧
⎨

⎩
−1

2
− 1 + λp

λp − μ∗[1 + 0.5 λp

1+λp
]

⎫
⎬

⎭
, (3)

which is similar to the square-well formula equation (2) with
a = 1.14/

√
e = 1/1.44 (note that this value of a is much

closer to the optimized one), b = 1, and c = 0.5/(1 + λp).
This approach is a controllable approximation with a concrete
physical meaning. However, it has never been applied to
superconductors with SF.

In contrast, several attempts to apply the square-well
model to SF have been reported. In [3, 4] the following
expression was derived (for μ∗ = 0):

Tc = 1.14ωνpω
1−ν
s exp{−(1 + λp + λs)/(λp − λs)],

with ν = λp/(λp − λs) (4a)

or ν = λ2
p

λp − λs

[

λp − λs + λpλs

1 + λp + λs
ln
ωp

ωs

]−1

(4b)

where the choice (4a) is due to Carbotte et al [4], and (4b) to
Vonsovsky et al [3]. Unfortunately, neither authors give details
of their derivations, so we do not know what was different

in their models. We were not able to reproduce either result.
The latest paper utilizing the square-well model (in the weak
coupling limit) is that by Shimahara [10]. Our own result for
the square-well model reduces to that of [10] in the weak limit,
and reads

Tc = 1.14ωp exp

⎡

⎣− 1 + λs + λp

λp − λs(1+λs)

1+λs+λs ln ωs
ωp

⎤

⎦ , ωs � ωp

(5)

Tc = 1.14ωs exp

⎡

⎣− 1 + λs + λp

λp(1+λp)

1+λp−λp ln
ωp
ωs

− λs

⎤

⎦ , ωs � ωp.

(6)
Unlike equation (4), equations (5) and (6) reduce to the
McMillan form upon making the substitution ωs → ωC � ωp,
λs → μ, as they should.

Given the controversy about the square-well model, it is
desirable to have a derivation in a controllable approximation,
such as the real frequency axis formalism of [9]. Assuming
an Einstein phonon at a frequency ωp and an ‘Einstein’
paramagnon at ωs, 2α2 F(ω) = λpωpδ(ω − ωp)− λsωsδ(ω −
ωs), we obtain the following iterative solution of the Eliashberg
equations:

Tc = 1.14ω
λp

λp−λs
p ω

− λs
λp−λs

s exp(K )

× exp

⎧
⎨

⎩
− 1 + λp + λs

λp − λs − μ∗(1 − K λp−λs

1+λp+λs
)

⎫
⎬

⎭

K = −1

2
− λpλs
(
λp − λs

)2

[

1 + ω2
p + ω2

s

ω2
p − ω2

s

ln
ωs

ωp

]

.

(7)

For ωp → ωs, K = −1/2, and at μ∗ = 0, equation (7)
reduces to equation (4) with ν = λp/(λp − λs).

As usual, the ultimate test for any approximation is
numerical calculations. We solved the Eliashberg equations for
a variety of the model α2 F(ω) including SF and compare them
with the proposed analytical formulas. In figure 1 we show
this comparison for the simplest ‘one-mode’ approximation,
one phonon and one paramagnon (we have verified that other
model spectra lead to similar results). As we can see, while the
equation (7), as well as its simplified version equation (4a),
describe the numerical results rather well when ωs and ωp

are comparable, the latter fails at ωs � ωp, and both fail at
ωs � ωp. Both effects can be easily understood: equation (4)
includes ωs in a negative power in all regimes, thus leading to
a total suppression of superconductivity at ωs → ∞. In reality,
in this limit the negative effect of the SF is renormalized down
logarithmically in the same spirit as the Coulomb repulsion.

Equations (7), (4) diverge at ωs → 0. This is due to the
fact that the derivations above assume that ωs, ωp � πTc. It
is possible to treat this regime separately. If ωs � Tc, the SF
act as static magnetic defects, and the standard theory of the
magnetic pair breaking [11] can be applied. In the Matsubara
representation, at ωs = 0 one needs only to keep the term
with n = m in λs(ωn − ωm). Then the equations reduce
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Figure 1. Comparison of Tc and the isotope coefficient with the exact
numerical calculations.

to the standard form [5, 11] with the pair breaking parameter
γ ≡ (1/2τP)/πTc = λs. In the weak coupling limit, Tc is

Tc = Tc0 exp[ψ(1/2)− ψ(1/2 + γ )], (8)

where Tc0 = Tc(λs = 0). One important difference exists
between pair breaking by SF with ωs = 0 and by magnetic
impurities: in the former case the pair breaking parameter γ
now does not depend on Tc. This has consequences for the
isotope effect, as we will see below.

For small but finite ωs � πTc summation of λs(n − m)
over n − m provides the expression for the pair breaking rate
in equation (8): γ = λs

Tc
2ωs

coth Tc
2ωs

. This result coincides
with equation (5.8) of [12] for dynamical pair breaking in
anisotropic superconductors if the anisotropy parameter g (as
defined in [12]) is set to −1. When ωs increases, Tc drops
sharply with a complete loss of superconductivity at ωs =
ω∗

s = e−CTc0/2γ (where eC 
 1.78). However, the condition
ωs � πTc used in the derivation of equation (8) is lost well
before ω∗

s (in fact, at ωs 
 ω∗
s /2).

One can take into account the strong coupling effects in
the square-well model, resulting in a renormalization γ →
γ /(1 + λp) = λs

1+λp

Tc
2ωs

coth Tc
2ωs

. As the comparison with
numerical calculations shows (figure 1), this approximation
underestimates Tc. However, it illustrates why Tc flattens out at
a finite value smaller than Tc0 when ωs → 0, instead of rising
as equation (7) suggests.

We also show in figure 1 that both equation (4b) and the
square-well model, equations (5) and (6), disagree qualitatively
with the numerical results over the whole range of ωs.

We will now turn to the isotope effect. Looking at
equation (4), one observes that the isotope coefficient, β =
ν/2 = λp/2(λp − λs) > 0.5, is always enhanced compared

to its BCS value and is independent of the SF frequencies.
Clearly, this should hold approximately in the range of
applicability of this formula, ωs 
 ωp � πTc. Indeed, the
more accurate equation (7) yields for β

β = 0.5
λp

λp − λs

[

1 − λs

λp − λs
F

(
ω2

s

ω2
p

)]

F(r) = (r 2 − 2r ln r − 1)/(r − 1)2.

(9)

The second term here is the correction to equation (4). It can
be of either sign, since with growing r the F(r) monotonically
grows from −1 to 1, and F(1) = 0. As discussed, equation (4)
itself becomes invalid at ωs < πTc. As ωs → 0, according
to equation (8), β = 0.5 (note that in the case of magnetic
impurities β > 0.5 due to the dependence of γ on Tc [5]).
Therefore, the isotope effect has to have a maximum at some
0 < ωs < ωp, and βmax > λp/2(λp − λs).5

This is confirmed by numerical calculations, which show
that the maximum isotope effect for given λs, λp is achieved
close to ωs ∼ ωp and is not far from λp/2(λp − λs). This
is a very important result, and we emphasize it again: if
superconductivity is depressed by spin fluctuations, the total
isotope effect increases compared to its BCS value.

We shall now apply this formalism to a superconductor
where Tc is believed to be substantially suppressed by SF,
MgCNi3 [7, 14, 15], which has attracted substantial interest
not because of its relatively modest critical temperature,
Tc ≈ 8 K, but because of its unusual antiperovskite crystal
structure and proximity to ferromagnetic instability. The latter
was first pointed out by Rosner et al [7], who believed in
such strong coupling with SF that they proposed a p-wave
superconductivity. Singh and Mazin [14] also came to the
conclusion that SF should play a role in superconductivity of
MgCNi3, but, on the basis of their frozen phonon calculation,
they deduced a large electron–phonon coupling constant (λp �
1) due to the bond-bending Ni phonons. They reconciled this
relatively large λp with a modest Tc within a scenario of s-wave
phonon-induced superconductivity depressed by SF. Later this
scenario was reinvented by Shan et al [15], who proved the
s symmetry of the order parameter by means of tunneling
experiments. This point has been since confirmed by several
groups and seems to be well established.

Singh and Mazin’s [14] prediction of the Ni phonon
playing the major role in the electron–phonon coupling in
MgNiC3 was based on a limited number of calculations at
a high-symmetry point in the Brillouin zone, and therefore
was more an educated guess than a quantitative argument.
A quantitative analysis was provided by Ignatov et al [16],
who performed linear response calculations of the phonon
frequencies and their coupling with electrons for the whole
Brillouin zone. They found a gigantic coupling for the Ni
bond-bending modes, and the most strongly coupled modes
(the mode considered by Singh and Mazin was not among
them) actually unstable. In other words, they found a set
of double-well-type instabilities involving mostly Ni atoms.

5 This is not the only case where electronic interactions can enhance the
isotope effect; cf, e.g., [13].
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This was verified by means of EXAFS measurements [16].
Ignatov et al [16] estimated the total electron–phonon coupling
constant as 1.5 and the logarithmically averaged phonon
frequency as 131 K.

Thus, the scenario of [14] was modified in [16] in the sense
that electron–phonon coupling and superconductivity were
coming from highly anharmonic predominantly Ni modes,
but not exactly the simple rotations of the Ni6 octahedra
considered in [14]. Unfortunately, strong anharmonicity of
these modes makes it impossible to evaluate their coupling
with electrons in the linear response calculations, but it is
obviously strong. However, one can estimate the electron–
phonon and electron–paramagnon coupling indirectly from
experimental data. Indeed, specific heat renormalization,
from different reports, ranges from 2.6 to 3.1 (see [17] and
references therein), implying that the sum λp + λs varies
between 1.6 and 2.1. Wälte et al [17] estimated ωp ≈ 143 K,
smaller than but comparable to the value calculated in [16],
ωs ≈ 25 K, and the mass renormalization due to paramagnons
as 1 + λs ≈ 1.43. Then, using MMF, μ∗ = 0.13, and
Tc = 6.8 K, as measured for their samples, they deduced
λp = 1.91.

However, there are several problems with this derivation.
First of all, as shown above, the proper formula is equation (4).
Using this formula instead of equation (2), and keeping all
their other parameters, we get a much more reasonable number,
λp = 1.61, not far from the value of 1.51 obtained in [16].
However, the SF model adopted in [17] cannot be considered
as proven. It is based on the disputable assumption that the
upturn of the specific heat quotient at low temperature and high
magnetic field is due to the paramagnon contribution to specific
heat, but there many other explanations of this effect. 25 K
seems to be unrealistically soft. Also, low Tc and high residual
resistance cast doubt on the sample quality in this study.

Here we adopt a different approach: we adopt the
calculated values λp = 1.5 and ωp = 131 K, in the harmonic
approximation, and total mass renormalization 1 + λp + λs =
2.85, so that λs = 0.35. The results of the numerical solution of
the Eliashberg equations with the α2 F(ω) function calculated
by Ignatov et al [16] and μ∗ = 0.12 are shown in figure 2,
together with the curve calculated from equation (7). In this
way, we find ωs ∼ 50 K, which, we believe, is a more
realistic number than 25 K. The corresponding total isotope
effect coefficient is 0.75.

This may sound in agreement with the recent experiment
by Klimczuk and Cava [18], who have measured the isotope
effect to be 0.54 for carbon only. If the total isotope effect
is 0.75, this suggests a seemingly reasonable Ni isotope effect
of 0.21, suggesting that Ni phonons couple with the electrons
twice weaker than C ones. Unfortunately, the first-principles
calculations suggest that the Ni modes couple with electrons
at least an order of magnitude more strongly than the C
modes (there is hardly any C character present at the Fermi
level). In the moment, the only way to reconcile this with the
measurements of [18] is to assume that the observed isotope
effect is a result not of the frequency shift of the C modes,
but of some subtle changes in the crystal structure induced by
the isotope substitution. Such a possibility is suggested by an

Figure 2. Tc for the electron–phonon spectral function calculated
in [16] for MgCNi3 (inset).

earlier study [19], where it was found that (i) Tc depends on
the lattice parameter at a rate of ≈310 K Å

−1
, which translates

an error of ±0.0015 Å in the lattice parameter [18] into an
error of ±0.46 K in Tc, larger than the isotope shift of 0.3 K,
and (ii) that two samples with the same lattice parameter and
the same neutron-measured C content have Tc differing by
0.71 K. A possible explanation is that, given the proximity of
MgCNi3 to a ferromagnetic instability, crystallographic defects
may induce local magnetic moments which, in turn, work as
pair breakers. The concentration of such defects, even for the
same net C content, may depend on the sample preparation and,
possibly, on isotope substitution.

Therefore further studies of the isotope effect both on C
and on Ni are necessary, in particular combined with accurate
measurements of the isotope shift of the phonon modes.
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